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Abstract. Let G(V (G), E(G)) be a connected, undirected, and simple graph with vertex set V (G) and edge set

E(G). For a bijective function f : V (G) → {1, 2, . . . , |V (G)|}, the associated weight of an edge uv ∈ E(G) under

f is wf (uv) = f(u) + f(v). The function f is called an edge-antimagic vertex labeling if every edge has distinct

weight. A path P in the vertex-labeled graph G is said to be a rainbow path if for every two edges uv, u′v′ ∈ E(P )

it satisfies wf (uv) ̸= wf (u
′v′). If for every two vertices u and v of G, there exists a rainbow u − v path, then

f is called a rainbow antimagic labeling of G. When we assign each edge uv with the color of the edge weight

wf (uv), thus we say the graph G admits a rainbow antimagic coloring. The rainbow antimagic connection number

of G, denoted by rac(G), is the smallest number of colors taken over all rainbow colorings induced by rainbow

antimagic labelings of G. To determine the rainbow antimagic connection number for any graph is considered

to be a hard problem, even it is considered to be NP-Problem. In this paper, we will determine the rainbow

antimagic connection number of graphs and characterize the lower and upper bound of the rac(G) of graphs.
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1 Introduction

All graphs considered in this paper are finite, undirected, connected with neither loops nor
multiple edges. For basic terminologies and notations of graphs, we follow Chartrand & Zhang
(2016). Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). The order of
G is |V (G)| = p and the size of G is |E(G)| = q. A graph labeling is one of big concepts in
graph theory that has attracted many mathematicians around the globe. A graph labeling is
a mapping from the set of elements in a graph (vertices, edges, or both) to the set of numbers
(usually positive integers), called labels. There are many types of graph labeling techniques that
have been established (see Gallian (2020) for the most complete survey on labelings).

In Hartsfield & Ringel (1990) defined antimagic graphs. A graph G is called antimagic if
there exists a bijection f : E(G) → {1, 2, . . . , q} such that the weights of all vertices are distinct.
The vertex weight of a vertex v under f , wf (v), is the sum of labels of edges incident with v,
that is, wf (v) =

∑
uv∈E(G) f(uv). In this case, f is called an antimagic labeling. Futhermore,

an (a, d)-edge-antimagic vertex labeling of graphs was defined in Simanjuntak et al. (2000). For
a given graph G with p vertices and q edges, a bijection f : V (G) → {1, 2, 3, . . . , p} is called
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an (a, d)-edge-antimagic vertex labeling of G if the set of edge weights consists of an arithmetic
progression {a, a+ d, . . . , a+ (q− 1)d}, where a and d are two fixed positive integers. The edge
weight of an edge e = uv under f , wf (uv), is the sum of labels of its end vertices, that is,
wf (uv) = f(u) + f(v). A graph that admits an (a, d)-edge-antimagic vertex labeling is called
an (a, d)-edge-antimagic vertex graph.

Another important topic in graph theory is graph colorings. In Chartrand et al. (2008)
introduced the term rainbow coloring of a graph. Let c : E(G) → {1, 2, . . . , k} be an edge
k-coloring of a graph G where adjacent edges may be colored the same. A path in G is rainbow
if no two edges of it are colored the same. The edge-colored graph G is rainbow-connected if
every two distinct vertices are connected by a rainbow path. The edge k-coloring in which G
is rainbow-connected is called a rainbow k-coloring. The minimum integer k in order to make
G rainbow-connected is called the rainbow connection number of G and is denoted by rc(G).
This graph invariant has gained much attentions in Caro et al. (2008); Kemnitz & Schiermeyer
(2011); Krivelevich & Yuster (2010); Li et al. (2012, 2017); Li & Shi (2013). The most complete
survey on rainbow colorings can be found the survey by Li & Sun (2017).

In Chartrand et al. (2008) authors gave the following results for the rainbow connection
number of cycles and trees.

Proposition 1. Chartrand et al. (2008) The rainbow connection number of a cycle on n vertices
is rc(Cn) = ⌈n2 ⌉.

Proposition 2. Chartrand et al. (2008) The rainbow connection number of a tree on n vertices
is rc(Tn) = n− 1.

The following prepositions and theorems are used to complete the proof of determining the
antimagic rainbow connection number.

Proposition 3. Septory et al. (2021) For any connected graph G, then rac(G) ≥ rc(G).

In the following theorem, we give the general lower bound of rainbow antimagic connection
number for any connected graph in terms of rainbow connection number and maximum degree
of vertices of the graph.

Lemma 1. Septory et al. (2021) Let G be any connected graph. Let rc(G) and ∆(G) be the
rainbow connection number of G and the maximum degree of G, respectively. Then rac(G) ≥
max{rc(G),∆(G)}.

In this paper, we study the combination of two notions, namely antimagic labeling and rain-
bow coloring of graphs. This new concept has been initially studied in Septory et al. (2021);
Sulistiyono et al. (2020); Budi et al. (2020); Jabbar et al. (2020) and obtained some rainbow
antimagic connection on some basic graphs. We will continue to study the rainbow antimagic
coloring and obtain the rainbow antimagic connection number of some graphs. We also anal-
yse the lower bound of rainbow antimagic connection number for any connected graph. The
characterizations of any graphs having the rainbow antimagic coloring are also studied in this
paper.

2 Results

Prior to show our new results, we will show the following propositions.

Proposition 4. If G is an edge antimagic graph, then G admits a rainbow antimagic coloring.

This basic fact naturally hold for an edge antimagic graph, since the evaluation of edge
antimagic labeling is done in each edge of G, and all edge weights are different. It implies that
there must exist a rainbow path between any two vertices. Furthermore, the following theorem
shows the existence of a rainbow u− v path for any two vertices u and v with distance at most
two.
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Theorem 1. Let G be a connected graph of diameter diam(G) ≤ 2. Let f be any bijective
function from V (G) to the set {1, 2, . . . , |V (G)|}. For u, v ∈ V (G), there exists a rainbow path
u− v.

Proof. Let f : V (G) → {1, 2, . . . , |V (G)|} be a bijection, and f admits edge antimagic laeling.
Clearly, if diam(G) = 1 then the maksimum d(u, v) = 1. There must exist a rainbow u − v
path, namely the edge uv. When diam(G) = 2, we consider two vertices u and v of G with
d(u, v) ≤ 2. Let z be a vertex in V (G)\{u, v} such that z is adjacent to u and v. Since f is
bijective, it must be wf (uz) ̸= wf (vz). Consequently, there exists a rainbow u− v path, namely
uzv.

From Theorem 1 we immediately get the following theorem.

Corollary 1. Let G be any connected graph of order at least two and diameter at most two.
Then, G admits a rainbow antimagic coloring.

Theorem 2. For ∀n ≥ 2 where n ∈ N , rac(Kn) = 2n− 3.

Proof. The complete graph on n vertices Kn is a graph in which every pair of distinct vertices is
connected by an edge. The graph Kn is rainbow antimagic according to Corollary 1. Trivially,
in any rainbow antimagic coloring of Kn, the smallest weight of edges must be 1 + 2 = 3, the
largest weight of edges must be n − 1 + n = 2n − 1 and the set of distinct edge weights is
{3, 4, 5, 6, . . . , 2n− 1} which gives 2n− 1− 3 + 1 = 2n− 3 elements. It is the number of colors
required to color G such that it admits a rainbow antimagic coloring. Hence, we get the following
result.

In Figure 1(a), we give an illustration of the rainbow antimagic coloring of K6. Furthermore,
in the next theorem, we will prove that the cycle with n vertices Cn admits a rainbow antimagic
coloring. We describe its rainbow antimagic connection number in the following.

Figure 1: (a) A rainbow antimagic coloring of K6 (b) A rainbow antimagic coloring of C8

Theorem 3. For ∀n ≥ 3 where n ∈ N , then

rac(Cn) =

{
3, if n = 4,

⌈n2 ⌉, if n ≡ 1, 2 (mod 4),

and ⌈n
2

⌉
≤ rac(Cn) ≤

⌈n
2

⌉
+ 1, if n ≡ 0, 3 (mod 4), n ̸= 4.
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Proof. Let Cn be a cycle with vertices v1, v2, . . . , vn and edges v1v2, v2v3, . . . ,
vn−1vn, vnv1. Let us consider three cases.

Case 1. If n = 4. By Proposition 1 and Lemma 1, then rac(C4) ≥ 2. Assume, to the contrary,
rac(C4) = 2. Let f : {v1, v2, v3, v4} → {1, 2, 3, 4} be a rainbow antimagic coloring of C4 such that
f induces a rainbow 2-coloring. It is obvious that wf (v1v2) = wf (v3v4) and wf (v2v3) = wf (v4v1).
Therefore, we have f(v1)+f(v2) = f(v3)+f(v4) and f(v2)+f(v3) = f(v4)+f(v1), which lead to
f(v1) = f(v3), a contradiction. Thus, rac(C4) ≥ 3. A rainbow 3-coloring induced by a rainbow
antimagic coloring of C4 is shown in Figure 2. Hence, rac(C4) ≤ 3. Combining with the lower
bound, we have rac(C4) = 3.

Figure 2: A rainbow 3-coloring induced by a rainbow antimagic coloring of C4.

Case 2. If n ≡ 1, 2 (mod 4). According to Proposition 1 and Theorem 1, rac(Cn) ≥ ⌈n/2⌉.
To realize the equality, let us define a vertex labeling f : V (Cn) → {1, 2, 3, . . . , n} such that

f(vi) = 2i, if n ≡ 1 (mod 4), for i = 1, 3, . . . ,
n− 3

2
, or

if n ≡ 2 (mod 4), for i = 1, 3, . . . ,
n

2
,

f(vi) = 2i− 1, if n ≡ 1 (mod 4), for i = 2, 4, . . . ,
n− 1

2
, or

if n ≡ 2 (mod 4), for i = 2, 4, . . . ,
n− 2

2
,

f(vn+1
2
) = n, if n ≡ 1 (mod 4),

f(vi) = 2i− n− 2, if n ≡ 1 (mod 4), for i =
n+ 3

2
,
n+ 7

2
, . . . , n− 1,

f(vi) = 2i− n− 1, if n ≡ 1 (mod 4), for i =
n+ 5

2
,
n+ 9

2
, . . . , n, or

if n ≡ 2 (mod 4), for i =
n+ 2

2
,
n+ 6

2
, . . . , n,

f(vi) = 2i− n, if n ≡ 2 (mod 4), for i =
n+ 4

2
,
n+ 8

2
, . . . , n− 1.

Then, the labeling f provides the vertex weights as follows.

wf (vivi+1) = 4i+ 1, if n ≡ 1 (mod 4), for i = 1, 2, . . . ,
n− 3

2
, or

if n ≡ 2 (mod 4), for i = 1, 2, . . . ,
n− 2

2
,

wf (vn−1
2
vn+1

2
) = 2n− 2, if n ≡ 1 (mod 4),
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wf (vivi+1) = n+ 1, if n = 1 (mod 4), for i =
n+ 1

2
, or

if n = 2 (mod 4), for i =
n

2
, or

wf (vivi+1) = 4i− 2n− 1, if n ≡ 1 (mod 4), for i =
n+ 3

2
,
n+ 5

2
, . . . , n− 1,

wf (vivi+1) = 4i− 2n+ 1, if n ≡ 2 (mod 4), for i =
n+ 2

2
,
n+ 4

2
, . . . , n− 1,

wf (vnv1) = n+ 1, if n ≡ 1, 2 (mod 4).

Thus, if n ≡ 1 (mod 4), we get

{wtf (e) : e ∈ E(Cn)} =

{
4i+ 1 : i = 1, 2, . . . ,

n− 3

2

}
∪ {2n− 2} ∪ {n+ 1}

∪
{
4i− 2n− 1 : i =

n+ 3

2
,
n+ 5

2
, . . . , n− 1

}
∪ {n+ 1}

={5, 9, . . . , 2n− 5} ∪ {2n− 2} ∪ {n+ 1} ∪ {5, 9, . . . , 2n− 5} ∪ {n+ 1}
={5, 9, . . . , 2n− 5, 2n− 2, n+ 1}

and if n ≡ 2 (mod 4), we have

{wtf (e) : e ∈ E(Cn)} =

{
4i+ 1 : i = 1, 2, . . . ,

n− 2

2

}
∪ {n+ 1}

∪
{
4i− 2n+ 1 : i =

n+ 2

2
,
n+ 4

2
, . . . , n− 1

}
∪ {n+ 1}

={5, 9, . . . , 2n− 3} ∪ {n+ 1} ∪ {5, 9, . . . , 2n− 3} ∪ {n+ 1}
={5, 9, . . . , 2n− 3, n+ 1}.

Therefore,

|{wtf (e) : e ∈ E(Cn)}| =

{
n+1
2 = ⌈n2 ⌉, if n ≡ 1 (mod 4),

n
2 = ⌈n2 ⌉, if n ≡ 2 (mod 4).

It can be seen that f induces an edge ⌈n/2⌉-coloring of Cn. Further, it is not difficult to show
that this coloring is a rainbow coloring of Cn. Hence, rac(Cn) ≤ ⌈n/2⌉. We can conclude that
rac(Cn) = ⌈n2 ⌉.

Case 3. If n ≡ 0, 3 (mod 4). From Proposition 1 and Theorem 1, we have rac(Cn) ≥ ⌈n/2⌉.
Next, define a vertex labeling f : V (Cn) → {1, 2, . . . , n} as follows.

f(vi) = 2i, if n ≡ 0 (mod 4), for i = 1, 3, . . . ,
n− 2

2
, or

if n ≡ 3 (mod 4), for i = 1, 3, . . . ,
n− 1

2
,

f(vi) = 2i− 1, if n ≡ 0 (mod 4), for i = 2, 4, . . . ,
n

2
, or

if n ≡ 3 (mod 4), for i = 2, 4, . . . ,
n+ 1

2
,

f(vi) = 2i− n− 1, if n ≡ 0 (mod 4), for i =
n+ 2

2
,
n+ 6

2
, . . . , n− 1, or

if n ≡ 3 (mod 4), for i =
n+ 5

2
,
n+ 9

2
, . . . , n− 1,

f(vi) = 2i− n− 2, if n ≡ 3 (mod 4), for i =
n+ 3

2
,
n+ 7

2
, . . . , n,

f(vi) = 2i− n, if n ≡ 0 (mod 4), for i =
n+ 4

2
,
n+ 8

2
, . . . , n.
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For the vertex weights, we have

wf (vivi+1) = 4i+ 1, if n ≡ 0 (mod 4), for i = 1, 2, . . . ,
n− 2

2
, or

if n ≡ 3 (mod 4), for i = 1, 2, . . . ,
n− 1

2
,

wf (vn
2
vn+2

2
) = n, if n ≡ 0 (mod 4),

wf (vn+1
2
vn+3

2
) = n+ 1, if n ≡ 3 (mod 4),

wf (vivi+1) = 4i− 2n+ 1, if n ≡ 0 (mod 4), for i =
n+ 2

2
,
n+ 4

2
, . . . , n− 1,

wf (vivi+1) = 4i− 2n− 1, if n ≡ 3 (mod 4), for i =
n+ 3

2
,
n+ 5

2
, . . . , n− 1,

wf (vnv1) = n+ 2, if n ≡ 0 (mod 4),

wf (vnv1) = n, if n ≡ 3 (mod 4).

It can be verified that f induces an edge (⌈n/2⌉+1)-coloring of Cn. Moreover, it can be checked
that this coloring is a rainbow coloring. Hence, rac(Cn) ≤ ⌈n/2⌉+1. Combining with the lower
bound, we obtain ⌈n/2⌉ ≤ rac(Cn) ≤ ⌈n/2⌉+ 1.

For example, we give in Figure 1(b) a rainbow antimagic coloring of C8 as an illustration.

Next, we study the rainbow antimagic connection number of a fan graph. The fan graph,
Fn, is a graph obtained from a path Pn by adding a vertex and joining it to all n vertices of Pn.

Theorem 4. For ∀n ≥ 3 where n ∈ N , then

rac(Fn) =

{
4, if n = 3,

n, if n ≥ 4.

Proof. Let Fn be a fan with vertex set V (Fn) = {v} ∪ {vi : i = 1, 2, . . . , n} and edge set
E(Fn) = {vvi : i = 1, 2, . . . , n} ∪ {vivi+1 : i = 1, 2, . . . , n − 1}. We separate our proof into two
cases below.

Case 1. If n = 3. By Theorem 1, rac(F3) ≥ 3. However, we will show that rac(F3) ≥ 4.
For a contradiction, suppose that rac(F3) = 3. Let f : {v, v1, v2, v3} → {1, 2, 3, 4} be a rainbow
antimagic coloring of F3 such that f induces a rainbow 3-coloring. We know that wf (vv1) =
f(v) + f(v1), wf (vv2) = f(v) + f(v2), wf (vv3) = f(v) + f(v3), wf (v1v2) = f(v1) + f(v2) and
wf (v2v3) = f(v2) + f(v3). Clearly, wf (vv1) ̸= wf (vv2) ̸= wf (vv3). Since v1v2 is adjacent to vv1
and vv2, then wf (v1v2) ̸= wf (vv1) and wf (v1v2) ̸= wf (vv2). Consequently, v1v2 must be colored
with the same color as vv3, that is,

wf (v1v2) = wf (vv3) or f(v1) + f(v2) = f(v) + f(v3). (1)

By the similar argument, v2v3 must be colored with the same color as vv1, that is,

wf (v2v3) = wf (vv1) or f(v2) + f(v3) = f(v) + f(v1). (2)

From (1) and (2), we get f(v1) = f(v3), contradicts to the assumption that f is a rainbow
antimagic coloring of F3. So, rac(F3) ≥ 4. Next, for the upper bound, label the vertices of F3

as in Figure 3. Thus, rac(F3) ≤ 4. Combining with the lower bound, then rac(F3) = 4.

Figure 3: A rainbow 4-coloring induced by a rainbow antimagic coloring of F3.
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Case 2. If n ≥ 4. By Theorem 1, we have rac(Fn) ≥ n. To prove the upper bound, let us
define a vertex labeling f(V (Fn)) → {1, 2, . . . , n+ 1} as follows.
For n = 4, 5, label the vertices of Fn by using the following formula.

f(v) = n− 2,

f(vn−4) = 1,

f(vi) = 2n− 4− i, for i = n− 3, n− 1,

f(vi) = 1 +
n+ i

2
, for i = n− 2, n.

Therefore, the vertex weights are

wf (vvn−4) = n− 1,

wf (vvi) = 3n− 6− i, for i = n− 3, n− 1,

wf (vvi) = n− 1 +
n+ i

2
, for i = n− 2, n,

wf (vn−4vn−3) = n,

wf (vn−3vn−2) = 2n− 1,

wf (vn−2vn−1) = 2n− 3,

wf (vn−1vn) = 2n− 2.

For n ≥ 6, label the vertices of Fn as follows.

f(v) =
⌊n
2

⌋
,

f(vi) = i, if n ≡ 0 (mod 4), for i = 1, 3, . . . , ⌊n+ 2

2
⌋, or

if n ≡ 1 (mod 4), for i = 1, 3, . . . , ⌊n− 2

2
⌋, or

if n ≡ 2, 3 (mod 4), for i = 1, 3, . . . , ⌊n− 4

2
⌋,

f(vi) = n+ 2− i, if n ≡ 0 (mod 4), for i = 2, 4, . . . , ⌊n
2
⌋, or

if n ≡ 1 (mod 4), for i = 2, 4, . . . , ⌊n+ 4

2
⌋, or

if n ≡ 2 (mod 4), for i = 2, 4, . . . , ⌊n− 2

2
⌋, or

if n ≡ 3 (mod 4), for i = 2, 4, . . . , ⌊n+ 2

2
⌋,

f(vi) = n+ 1− i, if n ≡ 0, 3 (mod 4), for i = ⌊n+ 6

2
⌋, ⌊n+ 10

2
⌋, . . . , n− 1, or

if n ≡ 1 (mod 4), for i = ⌊n+ 8

2
⌋, ⌊n+ 12

2
⌋, . . . , n− 1, or

if n ≡ 2 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, . . . , n− 1,

f(vi) = i+ 1, if n ≡ 0 (mod 4), for i = ⌊n+ 4

2
⌋, ⌊n+ 8

2
⌋, . . . , n, or

if n ≡ 1, 2 (mod 4), for i = ⌊n+ 2

2
⌋, ⌊n+ 6

2
⌋, . . . , n, or

if n ≡ 3 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, . . . , n.
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The labeling f gives the vertex weights below.

wf (vvi) = ⌊n
2
⌋+ i, if n ≡ 0 (mod 4), for i = 1, 3, . . . , ⌊n+ 2

2
⌋, or

if n ≡ 1 (mod 4), for i = 1, 3, . . . , ⌊n− 2

2
⌋, or

if n ≡ 2, 3 (mod 4), for i = 1, 3, . . . , ⌊n− 4

2
⌋,

wf (vvi) = ⌊3n
2
⌋+ 2− i, if n ≡ 0 (mod 4), for i = 2, 4, . . . , ⌊n

2
⌋, or

if n ≡ 1 (mod 4), for i = 2, 4, . . . , ⌊n+ 4

2
⌋, or

if n ≡ 2 (mod 4), for i = 2, 4, . . . , ⌊n− 2

2
⌋, or

if n ≡ 3 (mod 4), for i = 2, 4, . . . , ⌊n+ 2

2
⌋,

wf (vvi) = ⌊3n
2
⌋+ 1− i, if n ≡ 0, 3 (mod 4), for i = ⌊n+ 6

2
⌋, ⌊n+ 10

2
⌋, . . . , n− 1, or

if n ≡ 1 (mod 4), for i = ⌊n+ 8

2
⌋, ⌊n+ 12

2
⌋, . . . , n− 1, or

if n ≡ 2 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, . . . , n− 1,

wf (vvi) = ⌊n
2
⌋+ 1 + i, if n ≡ 0 (mod 4), for i = ⌊n+ 4

2
⌋, ⌊n+ 8

2
⌋, . . . , n, or

if n ≡ 1, 2 (mod 4), for i = ⌊n+ 2

2
⌋, ⌊n+ 6

2
⌋, . . . , n, or

if n ≡ 3 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, . . . , n,

wf (vivi+1) = n+ 1, if n ≡ 0 (mod 4), for i = 1, 3, . . . , ⌊n− 2

2
⌋ and

i = ⌊n+ 4

2
⌋, ⌊n+ 8

2
⌋, . . . , n− 2, or

if n ≡ 1 (mod 4), for i = 1, 3, . . . , ⌊n− 2

2
⌋ and

i = ⌊n+ 6

2
⌋, ⌊n+ 10

2
⌋, . . . , n− 2, or

if n ≡ 2 (mod 4), for i = 1, 3, . . . , ⌊n− 4

2
⌋, or

if n ≡ 3 (mod 4), for i = 1, 3, . . . , ⌊n− 4

2
⌋ and

i = ⌊n+ 4

2
⌋, ⌊n+ 8

2
⌋, . . . , n− 2,

wf (vivi+1) = n+ 2, if n ≡ 1 (mod 4), for i = ⌊n+ 2

2
⌋, or

if n ≡ 3 (mod 4), for i = ⌊n
2
⌋,
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wf (vivi+1) = n+ 3, if n ≡ 0 (mod 4), for i = 2, 4, . . . , ⌊n
2
⌋ and

i = ⌊n+ 6

2
⌋, ⌊n+ 10

2
⌋, . . . , n− 1, or

if n ≡ 1 (mod 4), for i = 2, 4, . . . , ⌊n− 4

2
⌋ and

i = ⌊n+ 8

2
⌋, ⌊n+ 12

2
⌋, . . . , n− 1, or

if n ≡ 2 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, . . . , n− 1, or

if n ≡ 3 (mod 4), for i = 2, 4, . . . , ⌊n− 6

2
⌋ and

i = ⌊n+ 6

2
⌋, ⌊n+ 10

2
⌋, . . . , n− 1,

wf (vivi+1) = n+ 4, if n ≡ 0 (mod 4), for i = ⌊n+ 2

2
⌋, or

if n ≡ 1 (mod 4), for i = ⌊n
2
⌋, ⌊n+ 4

2
⌋, or

if n ≡ 2 (mod 4), for i = 2, 4, . . . , ⌊n− 2

2
⌋, or

if n ≡ 3 (mod 4), for i = ⌊n− 2

2
⌋, ⌊n+ 2

2
⌋.

It can be checked that f induces an edge n-coloring. Since diam(Fn) = 2, from Lemma 1, then
there exists a rainbow x− y path for any two vertices x, y ∈ V (Fn). Therefore, we can conclude
that rac(Fn) ≤ n. It completes the proof.

For an illustration, in Figure 5(a), a rainbow antimagic coloring of F8 is given.
A wheel, Wn, is a graph obtained by joining a vertex to n vertices of a cycle. In the next

theorem, we determine the rainbow antimagic connection number of Wn.

Theorem 5. For ∀n ≥ 3 where n ∈ N , then

rac(Wn) =

{
5, if n = 3, 4,

n, if n ≥ 5.

Proof. Let Wn be a wheel with vertex set V (Wn) = {v} ∪ {vi : i = 1, 2, . . . , n} and edge set
E(Wn) = {vvi, vivi+1 : i = 1, 2, . . . , n}, where the index i is taken modulo n. We divide the
proof into two cases as follows.

Case 1. If n = 3, 4. For n = 3, W3
∼= K4. By Theorem 2, rac(W3) = 5. Now, consider the

case for n = 4. From Lemma 1, we have rac(W4) ≥ 4. However, it does not attain the best
lower bound, instead we have rac(W4) ≥ 5. For a contradiction, suppose that rac(W4) = 4. Let
f : {v, v1, v2, v3, v4} → {1, 2, 3, 4, 5} be a rainbow antimagic labeling of W4 such that f induces
a rainbow 4-coloring. We know that wf (vv1) = f(v)+f(v1), wf (vv2) = f(v)+f(v2), wf (vv3) =
f(v) + f(v3), wf (vv4) = f(v) + f(v4), wf (v1v2) = f(v1) + f(v2), wf (v2v3) = f(v2) + f(v3),
wf (v3v4) = f(v3)+f(v4) and wf (v4v1) = f(v4)+f(v1). Obviously, we have wf (vv1) ̸= wf (vv2) ̸=
wf (vv3) ̸= wf (vv4). For the color of other edges, we have the following subcases.

Subcase 1.1. If wf (v1v2) = wf (vv3), then, respectively, we have wf (v4v1) = wf (vv2),
wf (v3v4) = wf (vv1) and wf (v2v3) = wf (vv4). From the these facts, we get an equation system
below.

f(v1) + f(v2) = f(v) + f(v3)

f(v4) + f(v1) = f(v) + f(v2)

f(v3) + f(v4) = f(v) + f(v1)

f(v2) + f(v3) = f(v) + f(v4)

(3)
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Solving (3) by using Gauss-Jordan elimination method, we can obtain f(v) = f(v1) = f(v2) =
f(v3) = f(v4), a contradiction.

Subcase 1.2. If wf (v1v2) = wf (vv4), then, respectively, we have wf (v2v3) = wf (vv1),
wf (v3v4) = wf (vv2) and wf (v4v1) = wf (vv3). From these facts, we get an equation system
below.

f(v1) + f(v2) = f(v) + f(v4)

f(v2) + f(v3) = f(v) + f(v1)

f(v3) + f(v4) = f(v) + f(v2)

f(v4) + f(v1) = f(v) + f(v3)

(4)

Figure 4: A rainbow 5-coloring induced by a rainbow antimagic labeling of W4.

Solving (4) by using Gauss-Jordan elimination method, we can obtain f(v) = f(v1) = f(v2) =
f(v3) = f(v4), which again a contradiction. From all subcases, 4 colors are not enough to color
the graph W4. Therefore, rac(W4) ≥ 5. A rainbow 5-coloring induced by a rainbow antimagic
labeling of W4 is given in Figure 4. Hence, rac(W4) ≤ 5. Combining with the lower bound, we
have rcla(W4) = 5.

Case 2. If n ≥ 5. From Theorem 1, rcla(Wn) ≥ n. Let f : V (Wn) → {1, 2, . . . , n + 1} be a
vertex labeling of Wn defined such that

f(v) =
⌈n
2

⌉
+ 1,

f(vi) =
i+ 1

2
, if n ≡ 1(mod 2), for i = 1, 3, . . . , n− 2, or

if n ≡ 0(mod 2), for i = 1, 3, . . . , n− 1,

f(vi) = n+ 1− i

2
, if n ≡ 1(mod 2), for i = 2, 4, . . . , n− 3,

f(vn−1) =
n+ 1

2
, if n ≡ 1(mod 2),

f(vn) = n+ 1, if n ≡ 1(mod 2),

f(v2) =
n

2
+ 2, if n ≡ 0(mod 2),

f(vi) = n+ 3− i

2
, if n ≡ 0(mod 2), for i = 4, 6, . . . , n.

Then, the labeling f yields the the following vertex weights.

wf (vvi) = ⌈n
2
⌉+ i+ 3

2
, if n ≡ 1(mod 2), for i = 1, 3, . . . , n− 2, or

if n ≡ 0(mod 2), for i = 1, 3, . . . , n− 1,

wf (vvi) =
3n+ 5− i

2
, if n ≡ 1(mod 2), for i = 2, 4, . . . , n− 3,

wf (vvn−1) = n+ 2, if n ≡ 1(mod 2),

wf (vvn) =
3n+ 5

2
, if n ≡ 1(mod 2),
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wf (vv2) = n+ 3, if n ≡ 0(mod 2),

wf (vvi) = 4 +
3n− i

2
, if n ≡ 0(mod 2), for i = 4, 6, . . . , n,

wf (vivi+1) = n+ 1, if n ≡ 1(mod 2), for i = 1, 3, . . . , n− 4,

wf (vivi+1) = n+ 2, ifn ≡ 1(mod 2), for i = 2, 4, . . . , n− 3,

wf (vn−2vn−1) = n, if n ≡ 1(mod 2),

wf (vn−1vn) =
3n+ 3

2
, if n ≡ 1(mod 2),

wf (v1v2) =
n

2
+ 3, if n ≡ 0(mod 2),

wf (v2v3) =
n

2
+ 4, if n ≡ 0(mod 2),

wf (vivi+1) = n+ 3, if n ≡ 0(mod 2), for i = 3, 5, . . . , n− 1,

wf (vivi+1) = n+ 4, if n ≡ 0(mod 2), for i = 4, 6, . . . , n− 2,

wf (vnv1) = n+ 2, if n ≡ 1(mod 2),

wf (vnv1) =
n

2
+ 4, if n ≡ 0(mod 2).

We can see that f induces an edge n-coloring. Since diam(Wn) = 2, from Lemma 1, then there
exists a rainbow x − y path for any two vertices x, y ∈ V (Fn). So, rac(Wn) ≤ n. Combining
with the lower bound, then rac(Wn) = n.

For an illustration, in Figure 5(b), it is given an example of a rainbow antimagic coloring of
W6.

Figure 5: (a) A rainbow antimagic coloring of F8 (b) A rainbow antimagic coloring of W6

In the next theorem, we study the rainbow antimagic connection number of a friendship.
The friendship Fn is a graph obtained by identifying a vertex of n copies of triangles K3.

Theorem 6. For ∀n ≥ 2 where n ∈ N , rac(Fn) = 2n.

Proof. Let Fn be a friendship with vertex set V (Fn) = {c} ∪ {ui, vi : 1 ≤ i ≤ n} and edge set
E(Fn) = {cui, cvi, uivi : 1 ≤ i ≤ n}. Clearly, we have rac(Fn) ≥ 2n according to Lemma 1. Let
f : V (Fn) → {1, 2, . . . , 2n+ 1} be a vertex labeling defined as follows.

f(c) = 2,

f(u1) = 1,

f(ui) = i+ 1, for i = 2, 3, . . . , n,

f(vi) = 2n− i+ 2, for i = 1, 2, . . . , n.
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For the edge weights, we have

wf (cu1) = 3,

wf (cui) = i+ 3, for i = 2, 3, . . . , n,

wf (cvi) = 2n− i+ 4, for i = 1, 2, . . . , n,

wf (u1v1) = 2n+ 2,

wf (uivi) = 2n+ 3, for i = 2, 3, . . . , n.

It is clear that f induces an edge 2n-coloring of Fn. Since diam(Fn) = 2, from Theorem 1 and
Corollary 1, there exists a rainbow x − y path for any two vertices x, y ∈ V (Fn). So, we get
rac(Fn) ≤ 2n. Combining with lower bound, we can conclude that rac(Fn) = 2n.

For an illustration, a rainbow antimagic coloring of F4 is depicted in Figure 6(a).

Figure 6: (a) A rainbow antimagic coloring of F4 (b) A rainbow antimagic coloring of T9.

A rooted tree is a tree in which one vertex has been designated as the root. Suppose that T
is a tree rooted at a vertex u. For a vertex v ∈ V (T )\{u}, the level of v is defined as the length
of the unique path from u to v. The maximum of the levels of vertices in T is called the height
of T . In the next theorem, we give the exact value of rainbow antimagic connection number of
trees.

Theorem 7. If Tn is any tree of order n ≥ 2 then rac(Tn) = n− 1.

Proof. From Proposition 2 and Lemma 1, we have rac(Tn) ≥ n − 1. Next, we will show that
rac(Tn) ≤ n − 1. First, without loss of generality, suppose that Tn is a rooted tree. Let
f : V (G) → {1, 2, . . . , n} be a vertex labeling of Tn defined by applying the following algorithm.

1. Choose one vertex u in Tn arbitrarily as the root and then, define f(u) = 1.

2. Partition the other vertices in V (Tn)\{u} into V1, V2, . . . , Vheight−1 where Vi = {vij |j =
1, 2, . . . , |Vi|} is the ordered vertex set (say from left most to right most) in the ith-level of
Tn.

3. For i = 1, 2, . . . , height− 1 and j = 1, 2, . . . , |Vi|, define

f(vij) =

i−1∑
t=1

|Vt|+ j + 1.

Note that if i = 1, then
∑i=0

t=1 |Vt| = 0.

From the labeling above, one can verify that f induces an edge (n − 1)-coloring of Tn. Since
Tn has n − 1 edges, then there exists a unique rainbow x − y path between every two distinct
vertices x, y ∈ V (Tn). This concludes the proof.
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For an illustration, in Figure 6(b), it is shown an example of a rainbow antimagic coloring
of T9.

In the following theorems, we characterize all graphs with rainbow antimagic connection
number one or two. This characterization gives a hint for future research activities in charac-
terizing any graphs for their rainbow antimagic connection number.

Theorem 8. Let G be a connected graph. The rac(G) = 1 if and only if G is a complete graph
of order two.

Proof. Let rac(G) = 1. It is clear that diam(G) = ∆(G) = 1. Hence, the graph G must be a
complete graph of order two. Conversely, it follows from Theorem 2 that rac(K2) = 1.

Theorem 9. Let G be a connected graph. The rac(G) = 2 if and only if G is a path of order
three.

Proof. Suppose that G is a path of order three. By Theorem 7, rac(P3) = 2. Suppose that
rac(G) = 2. G must have diam(G) ≤ 2 and ∆(G) ≤ 2. If diam(G) = 1 and ∆(G) ≤ 2, then
G is a complete graph of order at most three, which is impossible, since for n = 2, 3 we have
rac(Kn) ̸= 2. Thus, G has diam(G) = 2 and ∆(G) = 2. The possible graphs are G = C4 or
G = P3. However, according to Theorem 3, we can not choose G = C4, since rac(C4) = 3.
Hence, G = P3.

3 Conclusion

In this paper, we have continued to initiate study rainbow antimagic connection number of
graphs. We proved that any connected graph with diameter at most two admits a rainbow
antimagic coloring. A general lower bound of rainbow antimagic connection number for any
connected graph was obtained. The sharpness of the lower bound was proved for trees, friend-
ships, and some cases of cycles, fans and wheels. Moreover, all graphs with the rainbow antimagic
connection number of one or two are also characterized in this paper. However, apart from this
results, the study of rainbow antimagic coloring are widely challenging. Thus we propose the
following open problems.

Open Problem 1. If G admits a rainbow antimagic coloring, can we develop a construction
for determining the lowest rainbow antimagic connection number?

Open Problem 2. Let G be a connected graph. Determine the sharpest upper bound of the
rainbow antimagic connection number rac(G).
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